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A wide class of mechanical problems lends itself to the group-theoretic treatment. A 
connection between the integrals of differential equations and the invariants of continu- 

ous groups, was first recognized by Lie Cl]. A theorem by Noether [l and 21 showed the 
connection between the conservation laws and the property of invariance of the action 
function. Kinematics of the rigid body can be treated as a theory of invariants of a group 
of motions supplemented with the condition of invariance of time. ~roup~theoretic 

treatment can also be applied to the ~amIltonian systems, which form a set of differen- 
tial invariant manifolds of the group of contact transformations. 

In the problem of optimal stabilization, the control function can be regarded as an 
invariant of a continuous group of transformations preserving the equations of the stabi- 
lizable system and the corresponding variational Euler’s equations. Such a group clas- 
sifies the initial values of solutions of the system, according to the closeness of these 
solutions (in the limit) to the trivial solution. 

Special theory of relativity can be treated as a theory of invariants of a group (Lorentz’) 
preserving the plane, pseudo-Euclidean space-time metric (see e. g. [33 for the group- 

theoretic treatment of physics). 
~variants of the group must also be attained when the group-theoretic approach is 

used to find the solutions of equations of mathemati~l physics [4 and S] and it is in 

connection with the group-theoretic interpretations of such applied problems that we 
analyze the feasibility of cons~uct~~g finite (nondifferential) invariant manifolds of the 

continuous group G directly from its defining equations (without integration), 
We prove that any manifold at the points of which the defining equations degenerate 

(this means lowering the rank of the matrix of the left-hand side coefficients of the 
defining equations), is an invariant manifold of the group G. Equations of these mani- 

folds can be written out explicitly. When the group C is intransitive, then its defining 
equations undergo the identity degenera~on. To obtain the invariants of the group, we 

write explicitly a concurrent Pfaffian system whose rank is equal to the order of the 
group G. Necessary and sufficient conditions for the local transitivity of C are formu- 
lated for the case when any of its points is a general position point. 

1. Statesmsnt of the problsm, The idea of group-theoretic treatment of 

physical problems is attributed to Klein, who applied it to geometry [6]. However, as we 
said before, situations when certain facts can be formulated in terms of the invariants of 
some group of transformations, may be encountered outside the field of geometry. 

The main difficulty arising here is as follows. As we know ( [7]. pp. 184-211). any Lie 

group C on the space B,of variables x1,. . . , z,, can be defined using a linear system 
of partial differential equations, which we shall call, following Lie, the system of defin- 

ing equations. These equations connect the components & (.c) of the in~n~tesimal oper- 
ators S = & (z> 6/dXt which themselves are the elements of the associated Lie algebra. 

Invariants and invariant manifolds of G or of its continuation, can be calculated using 
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the well known procedures p and 8j. The latter can however be applied only after the 
functions Ei (x) have been obtained by integrating the defining equations, and it is the 
integrating process that causes the main difficulty. 

Let us consider the following system of defining equations of some group G 

(1.1) 

where 1: and E are the dummy summation indices. 

We shall attempt to determine all nondifferential invariants of the subsets of the group 
G directly from (1.1). whenever it can be done without recourse to integration. 

8, Reductfon af the ryttsrn of dkffnfng equation8 to passivity. 
Let us assume that (1.1) has been solved for various derivatives of the unknown functions 

and, that neither these derivatives nor the second derivatives enter the right-hand sides 
of the defining equations. We shall call these derivatives principal, and all the remain- 

ing ones -parametric [9]. 
If, after all possible diffe~ntiations of (1.1) have been performed and the principal 

derivatives eliminated from the right-hand sides we find, that not a single pair of inde- 
pendent equations with identical left-hand side parts exists, it will mean that no connec- 
tion exists between the parametric derivatives. In this case the system (1.1) shall be 
called passive. 

If (1.1) is not passive, we can make it pa’ssive according to the Riquier theory [9] by 
supplementing it with a finite number of equations associated with (1.1) algebraically 
and differentially. 

It can be shown that a finite number of steps is required to bring (1, I) to the passive 
state, or to show its incompatibili~. 

Indeed, each elementary step of supplementing (1.1) is based on adding a certain num- 
ber of equations in accordance with the comparison formulas for the monomials assigned 

to the principal derivatives of the system (1.1). Since the new principal derivatives 
appearing during the differentiation of the parametric derivatives do not belong to the 
set of the principal derivatives of (1. l), therefore they cannot be obtained from the latter 
by differentiation. 

Consequently, the monomials assigned to the new principal derivatives are not divisi- 

ble by the monomials assigned to the principal derivatives of (1.1). We can say that the 
sequence P (cx) of the vectors a = (a,,... ,a,) with nonnegative components does not 
increase, if for the vector a’ following the vector a , at least one of the differences 
Ui’ - cli is negative. 

It therefore follows, that the sequence of monomials assigned to the new principal deri- 
vatives in each step, does not decrease. Hence by the Lemma of [9] (p. 68) the number 
of new principal derivatives and, consequently, the number of equations supplementing 

(1.1) to make it passive, is finite. The property of passivity of (1.1) will pIay an impor- 
tant part ln the later stages. 

3. Necsrtrry condition8 for the deftnfng equationa. We shall obtain 
the conditions which should be satisfied by the coefficients U.,i’ of the system (1.1) for 
the case, when (1.1) forms a system of defining equations for some group. 

Let us consider the matrix jiuvic 11 where y denotes the 17th row and where the columns 
are ordered in the following manner. We shall set a correspondence between each pair 



of numbers (a, i) and the column number 

Yl =k -I)n-+-i (3.1) 

Assuming that E < B and i dn, it is easy to see that the column number yr defines 
a and i uniquely. Let us denote the overall ranks of the matrices 11 UYi’n and 1 c+i 11 by 

r and h respectively. Obviously 

0 < m < ~2 f n, 0 6 It < min (m, n), 0 < T < min (m, n2) (3.2) 

Let Ii’I,...r E’, and El,..., 5, be two solutions of (1.1) and X’ = &“d/dxi with 
X = &.9/&i the corresponding infinitesimal operators, Then by the Lie theorem 171 

the functions X’& -XS’lr..mr X’t, - X;,’ should also be a solution of (2. I). We 

have 
0 = a.&&- 

k 
(X’gj - .XEf’) -‘CQ (X’Ei - X&‘) = 

and by (LX), 

(3.3) 

Let now the system (1.1) be such, that none of the supplementing equations is of the 

first order. Then each of the equations of (3.3) should be an algebraic consequence of 

(1.1). Therefore such regular functions &i can be found, that, in addition to (I, l), the 

(k,l,e,i=l,...,n; f,~=%,...,m) 

where 6r, denotes the Kronecker delta, will also be fulfilled. 
The relations 0 < ?a < m < n2 also hold for h, m and n. 
We shall first consider the case 0 < h zs m < n. Linear combinations of (1.1)yield 

while the conditions (3.4) become 

(3.5) 

(3.0) 

(3.7) 

(P =m+ 1,. . ., n) 

Inserting into (3.6) and (3.8) the values of h;~ from (3.7) and %j from (3.5), we 
obtain equations which should be identities in aEi/aXc and LI taken as independent 
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variables. This yields the following conditions : 

Let us now define the operators 

Then the above conditions will respectively become 

(Yt’, Y$,‘l) = b~“Yi~ - &ill Yicl* (Yi8, Z,) = 0, (Z,, 2,) = 0 (3.9) 

Let us put 0 <h <m <n 2. Combining the Eqs. (1.1) linearly, we can write 
. 

@f 
ajic ar, = Ej + ~jdov 

% 
aPie q = 0 (3.10) 

I- ,..., fr; i,e=i, . . . . n; o=h+l,_.., n; p==h+l,..., n ‘--1 

Let us solve, at the general points, the second system of (3.10) for various derivatives 
and insert the results into the first system. This, by (3.1). will define the set f, consisting 

of(m - n ) pairs of such numbers (01, @), that 

avlL = J&y when r > n (k, I) E L; bzk = 0 when r 6 I( (k, I) E L 

To=@--)n+D, r = (k - 1) n + I 

With the defining equations written in this form, we can obtain the following expres- 

sions for some of the conditions (3.4) 

h ._aa,,ta% au..’ a<, act.. 
PJ - axi ax, ’ 

hj*= AL_-_-E 
ax* ax, as, El 

(a, G’ = h + 1, . 1 ., rr,; H = 1, . . ., h) 

a=@-- i)r,-f-P, CI’=@‘-- I)~~-i-Ji, (a, B)EfG (a’, JY)EL 

Inserting into the remaining equations of (3.4) the expressions obtained for h and the 
values of Er from (3.10) we obtain a system of equations, each of which should be iden- 
tically satisfied in &, and be an algebraic Consequence of the second system of (3.10). 
The condition that the coefficents of &,,in these equations vanish identically.yields 
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Those of the above equations in which 

9 
rk 
ril -a,f6:--a,:(a,~~~-aa,;lb~) 

should be an algebraic consequen& of 

apie (a& f &) = 0 

Therefore regular functions kr$ exist such, that the relations 

will be identities in i&/$xc taken as independent variables and $?t$, = /.t$Pi. The 
last equations yield 

, 
p!j; s%&& a'=(a'-l)n+B', (a', P’f EL 

where 
Iji’.$< = a$&’ - afiis,“f - a$ (a$6~’ - U$$) 

Let us now introduce additional variables y,, i,... , urn and define the operators 

Yi’ = axL asx ‘L+agk$--, Z~=-d&+a,,~ 

Then the necessary conditions for the de?ining equations (g. 11) and (cl2) can be 

written in the form (Z,, Zo) = 0, (Z&, Ylk) = 0 and 

III particular, when a~+.,,+ = . . . = amiL = 0 ', then Eqs. (3.13) yield (3.9). 

4. Theorem of the invariant manifolds. When h =O .Eqs.(l,l) 
admit a transitive group of transformations & = &ii; i = ‘i ,. . . I n. 

Let now 0 ( h Q n < n2. As stated in the previous Section, the system (1.1) can 

be transformed into (3.1.0). In the following we shall assume, that: 
1) a finite region r’ of the space {Z} exists, in which the functions alie , . . . , ahi' 

and aj, are regular and 
2) the quantities &+,,i, _.., a’,i are real constants (this constraint is not easily 

removable, since the procedure of making the defiiing equations passive is not complete). 
Then, from the conditions (3.13) it follows that the operators Yt’; and 2, formed 

with the help of the coefficients of the defining equations (3.10) will be the elements 

of the (a2 + n - h)-dimensional algebra L ‘of the infinitesimal operators. Numbers 
5 

ah+l,i 9---9 %i will be subject to constraints following from the conditions for the 
structural constants. We shall denote the group corresponding to this algebra, by G* , The 
madix of. L will be of the order of (na f n - h) X (m -I- n - h) and will have 

the form 

I 
UjiE 0 a& 

ujo -E 0 
I 

where E denotes a ( n - h)-th order unit square matrix. The general rank of (4. I) will 

beq<mi-n - h. If the rank of (4.1) is not reduced at any point of r’; then, by 

the Riquier [9] theorem a group G exists, which is continuous and transitive at any point 
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of the region I’ c I“. Using the well known facts of the theory of invariants of the Lie 
groups 1’7 and 81 we shall first show that, if the solutions of (3.10) are continuous in 
r c r’, then any invariant manifold 1 of the grow G* belonging to r will be an inva- 
riant manifold of 6. Let us consider an arbitrary point ;2” = (z’s ,, ,_, so,,) E r. Let 

the rank of the matrix (4.1) be lowered at this point by f -units relative to g . Xf t =#= 0, 
then x0 belongs to a sequence of invariant manifolds of the group G*, contained within 
one another. Suppose that the smallest of these manifolds 1, is of dimension p and is 
defined by n - p independent equations 

cpl(Z) = .** ===TP*_p (z) ==o (4.2) 

which are obtained from the condition that all minors of the order of t + 1 of the mat- 
rix (4.1). vanish. The following relations will hold at x0 and at all points of 1,. 

z,cp,- --~+ax$L 0 
w x 

Multiplying al1 fth equations of the first system of (3.10) by &&/@xj and adding, we 

obtain, by (4.3), 

If G is continuous in I’, then the above relations should hold along Ip;Taking (4.4) 
into account we obtain 

which shows that the set 1, is an invariant manifold of G. 
From (4.3) it follows that t > n -p. If t = n -p, then the manifold Jr, will 

be the only invariant manifold of G of dimension p, containing the point 9. Indeed, in 
this case the conditions connect~g the magnitudes Et at the point x0 require exactly 
?Z - p relations (4.5) and the group G is therefore transitive near the point 2” belong- 
ing to 1,. If we had another invariant set 1,’ # 1, also passing through 5’ , then the 
intersection I’,, n 1, wouid also be an invariant set of G of dimension less than p , 
and this would be impossible by virtue of the transitive property mentioned above. If 

t>= - p, then the group @sexists on I, intransitively and admits on it exactly 

$fP - n invariants 
9% =const,.,., qwp n =const (4.6) 

In this case, the following relations will hold, in addition to (4.3) and (4-41, at the 
points of rP Vg, =Z&*~U (v=1,._., r-l-p-n) (/1.7> 

and they will imply, as in the previous case, the conditions & (7+/9x; = 0 hold on I,. 
This in turn implies, that the intersections of the surfaces (4.6) with 1, will be invariant 
manifolds of G of dimension p - 1 and we can therefore say that no other invariant 
manifolds of G of dimension p - 1 pass through 9. 

The above argument are valid for all p = O,... , n. Assuming lastly that every set 
1, of the group contains all its invariant manifolds of dimension less than p., we obtain 

the following theorem. 
Theorem 4.1 . (1) If the rank m -I- n - h of the matrix (4.1) does not decrease 

at any point of the region l’, then the group G is locally transitive at any point of this 
region. This condition is necessary. 



2) bet the system (1.1) of the defining equations be reduced to the form (3.10) 

% 
aji’ q = 5j + @joLv 

“5, 
apig ilz, =: 0 

(j=l,**.,h; i,e=l,..., n; o=hfl,...,n; p=hS_l,..., m) 

where affc are functions of 2 regular in l? while a,f are constants. 

Then the infinitesimal operators 

corresponding to some Lie group G*. If Eqs. (3.10) admit solutions regular in I’ c 1”, 
then the group G defined by the set of all such solutions admits, in I’ , all invariant 
manifolds of G*.This exhausts all invariant manifolds of G of dimension p < p. where 

PO is the greatest dimension of the invariant manifolds of G*. From this it follows, in 

particular, that, if p0 = r2 - 1, then the invariant manifolds of G* yield all invariant 
manifolds of G. 

3) If in (1.1) all CZji = 0 (h = 0 ) , then the group G defined by these equations 
is locally transitive at all points and does not admit any invariant manifolds. 

6, Notes on rpplfcrtion of the Theorem 4, 1, (1)Singular inva- 
r i a n t ma n i fo 1 ds . rn accordance with a well known procedure, the invariant mani- 
folds of C* are calculated as follows. We equate to zero all minors of the order n - n+l 

of the matrix dl: The resulting system of equations yields, provided that it is consistent. 

the set of all invariant manifolds of the lowest dimension. Invariant manifolds of higher 
dimensions can be obtained by equating, consecutively, to zero,all the minors of higher 
order, 

It can easily be inferred from the structure of M that any of its minors of the order 
d>n- tt.(provided that it is not identically equal to zero) is equal to the correspond- 
ing (by the Laplace rule)[d - (n - h)]-th order minor of the matrix 

II a;+ $t If = II a”,$ II (7 = rl, . * . , m) (5.l) 

Thus the above procedure of determination of invariant manifolds cm be applied 
directly to the matrix (5.1) of the left-hand side of the defining equations (3.10). This, 
together with Theorem 4.1, implies that the manifolds on which the defining equations 
degenerate, will be invariant manifolds of the group defined by these equations . 

2) Nonsingular invariant manifolds. If the general rank (I of the mat- 
rix ,+f is less than n -I- m--h, then, obviously, the overall rank r of the matrix (5.1) 
will be less than tn. In this case the group CQ and consequently G , will admit ?I&-- r 

invariants $ r = eon& ,..., $,,+_, = con&, and a set of regular functions ~~(a),...,~(8~ will 
exist such, that rtt - r independent relations &“u(sfacvi = 0, s = 1,. . . ,m - r will hold 

at any point of l?‘. Functions A,(‘) can easily be found. The assumption that solutions 

of (3.10) continuous in I’ exist, implies that m - r relations of the type 

l(Q) Ej + r2@)a - E 
J J .I* - 

z+@Q*=O 

should hold. Conditions xg, = 0, v = l,..,,lft - r imply that the Pfaffian system 
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kf’) dxl+-.+%;fdx,,=O 

..* I...... 

X(“‘-‘;dxl f , . . + ~~m-‘)dxn = 0 
I 

is consistent and admits the invariants in question as its solutions. The above argument 
also applies to the invariants of a group induced by C on its invariant manifolds. 

Example. We shall consider the defining equation of the group Q admitted by the 
differential equation au -= 

aXI 

(5.2) 

Xl’ = Xl + 6, x2’ = =a + phi lL’= u+ T-6 

Since these equations are homogeneo~ (ir i 0) , Theorem 4.1 implies that the group 
C, defined by them, is locally transitive at all points. 

Let us supplement (5.2) with 

xl ax, ay+,$a-J-u~=m~ (5*3) 
where m is a natural number. 

It can easily be verified that the system (5.2) supplemented with (5.3) will again be 
a system of defining equations and, that it will be passive. Eqs. (5.3) define a homoge- 

neous subgroup C of Cl. The matrix x etI /I of the left-hand sides of (5.2) and (5.3) has 
the form 0 0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 2 0 

1 0 0 0 -2 0 0 0 1 / 

0 2 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 0’ 

xt 2.J ff 0 0 0 0 0 0 I 

B 

0 0 0 2-I qrt 0 0 0 

II 
0 0 0 0 0 0 rl I:, u,j 

Some of the fifth order minors of this matrix nowhere become equal to zero. All sixth 
and seventh order minors become zero at the point 5, -z ;cl C-I IL = 0 and therefore con- 

stitute a zero-dimensional invariant manifold IQ of the group C. All eighth order minors 
become zero on the surface itr,ic -E_ xqs = 0 (5.41 

which is, in this case, a two-dimensional invariant manifold I, of the group c. 

Since the overall rank of the matrix 7 z= VI = 8, the group c; does not admit any 
invariants, At the general points of the surfacel, , the rank of the matrix is reduced by 
one, consequently the group induced on II, by c is transitive. 

We note that the quantity u defined by (5.4) as a function of the independent varia- 
bles xl and x2 is, as expected. a solution of the parent equation 
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The problem of synchronizing almost conservative dynamic objects [l] under weak con- 
straints is considered. The character and mechanism of action of the objects on the sup- 

.porting system are defined qualitatively and are no way related to its specific form 121, 

The proposed procedure for investigating synchronous states in such systems is based 
on the notion of the dynamic influence matrix. It is shown that qualitative definition 
(specification) of the character of action of the objects is a natural basis for their clas- 
sification. The paper ends with an examination of the synchronization of generators of 
“forces” of the simplest type, i.e. of one- and two-dimensional “forces”. 

The results can be applied, for example, to-the solution of vibration engineering prob- 
lems involving the properties of several complex vibration sources operating simultane- 

ously. 
The problems of synchronous state stability have already been investigated in [3 and 41, 

and therefore will not be considered here. 

1. The dynamic influence matrix. Let us assume that the motion of the 
arbitrary i th object (i = 1.. . , n) in a system is completely defined if we know the 
time variation of li X 1 vector columns of its proper coordinates Qi = (qi(t), . . . . qi(‘i)) 
and mi X 1 vectors of the reverse influence parameters x1 = (xi(t), . . . , xicmiJ). The 
physical character of the reverse influence parameters is completely determined by 
the specifies of the object and is unrelated to the form of the supporting system @I. The 


